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Abstract

This rescarch demonstrates effective methods in achieving a sparse solution to model develop-
ment. Sparse solutions can greatly aid in signal approximation and prediction by capturing
the dominant characteristics of the signal - even for higher dimensionality. This mecans a signal
and its prediction can be reconstructed with less noise, so long as only a limited selection of
functions arc used to model the signal. The enforcement of this limit is known as sparsity -
and it is achieved through various optimization routines in convex programming. This rescarch
begins by introducing the Least Squares technique to curve fitting and model development.
This approach can adequately approximate a signal without understanding the underlying dy-
namics which produced that signal. The Least Squares solution provides the minimal 2-norm of
the residual error both analytically and as an optimization routine. The optimization routine
is further investigated to not only minimize the error of the model, but also the number of
functions used to build the model. The algorithm may seclect from a wide array of functions
and combinations of functions as found in a dictionary. By posing the problem in this manner,
a tradeoff is scen between number of functions in the model, and the error of the approxima-
tion and prediction. Once a sufficient number of functions has been included in the model,
the error minimization is improved only marginally by including any more basis functions. At

this point, the tradeoff has occurred and an adequate reconstruction of the signal has been



formed. Further, the ability to form a sparse solution is enhanced through the exploration of
Global-Local Approximation Mapping. This rescarch uses many different examples, varying in
complexity and dimensionality - with real applications in output reconstruction, terrain map-
ping, and even financial analysis. Each example has its advantages and limitations utilizing

model development with sparsity constraints.
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Chapter 1

Introduction

In recent years, there have been developments in methods of signal representations. Signals can
now be represented as a collection (a dictionary) of parameterized waveforms (h;) with coethi-
cients (x;) such that a signal (s) can be decomposed as s = i z;h; + r, where r is the residual
i-1
(the difference between the measurement and the approximation). A better approximation will
therefore minimize the absolute sum of the residual. Signals can vary in dimensionality - having
different number of inputs. For example, modeling the altitude of an aircraft with respect only
to time, would be a one dimensional approximation. If that same altitude, of that same aircraft,
was modeled with respect to thrust, angle of attack, gross weight, and pressure altitude, a four
dimensional model would be used to form the approximation. An important assumption in this
rescarch is that even though many systems have multiple inputs AND multiple outputs, cach
approximation formed will be in terms of one output only. This is due to the assumption that
if two outputs have no cffect on cach other, they can be approximated separately. If one output

does have an effect on another, it can be used as an input when forming an approximation

model for the other output.



The second important assumption of this research is that the underlying dynamics of the signal
is unknown. The focus of this study is to simply reproduce the signal using any number of basis
functions available. The advantage of this type of analysis is its extensibility in solving a wide
rangc of problems. Of course, there is a disadvantage to this approach as well. A "complicated’
signal is more difficult to approximate, and when a model is formed successfully, it will consist
of many parameters. This takes computational time and in some cases captures the noise of
the signal rather than the signal itself. The challenge then becomes developing a model that
captures the main components of the signal, thus limiting the complexity of the model while

achicving a reasonably minimized residual squared sum.

1.1 Problem

To create a model used in a signal approximation, an algorithm [1] must select the proper
components that will minimize the residual. Since it is assumed that the main components of
the signal are unknown, the algorithm must pick from a wide variety of candidate components.
These candidate components are known as basis functions (which will form the basis of the
approximation model) and the collection of the basis functions is known as a dictionary function.
Dictionarics can contain any number or varicty of function types, and multiple dictionaries
can be combined to form a larger dictionary of candidate basis functions. Due to the high
availability of dictionaries [2], such as orthogonal polynomials, sinusoids, radial basis functions,
step functions, wavelets, chirplets, and many others, approximation algorithms can have more
basis functions than the actual signal has measurement points. This, and the assumption that
a dictionary can have more basis functions than needed to compose the original signal, makes

an ‘over-complete’” dictionary.



The problem then involves selecting the best basis functions, from that dictionary, to gencrate
the model that can reconstruct the signal. This means climinating much of the dictionary. By
forcing the algorithm to utilize only the most dominant basis functions, a principle known as

‘sparsity’ is enforced.

1.2 Objective

This research will examine the principle known as sparsity, which through various methods
automatically seclects the fewest number of basis functions that will form an approximation,
given certain tolerances in minimization of the residual. The tradeoff between having fewer
basis functions or having a smaller residual will be examined for systems with varying number
of inputs. When an algorithm forms an approximation model, a certain weight is given to
every function in the dictionary. In some cases, the weight is zero, showing no contribution
of this function, but more often than not, without any constraints, cvery basis function is at
least assigned some weight. Therefore, a convenient way to minimize both the residual and
the number of coefficients is through an optimization routine, which can change the emphasis
placed on minimizing the residual or the sum of the coefficients. Including minimization of
the sum of the coefficients will force the algorithm to assign more zero weights to the basis
functions when forming the approximation model.

By limiting the number of basis functions, the dominant functions used to reproduce the signal
arc sclected. When too few basis functions are used, the residual sum grows rapidly. It is
at this point that a tradcoff is found. Increasing the number of basis functions does little for
minimizing the residual or improving the model approximation, and decreasing the number

of basis functions shows a growth in the residual and neglects to capture certain features of



the signal. The systems to be analyzed include, but are not limited to, benchmark functions,
terrain maps, and stock market models.

To further reduce the number basis functions needed, methods of global-local mapping, using
weighted regional approximations, will be implemented. This adds a new complexity to the
observable tradeoffs. Of course, the goal is still to minimize the global residual (through 2-norm
minimization), but now the number of basis functions used is decreased simply by increasing the
number of regional approximations. Since the minimization routine is still used, the emphasis
placed on minimizing the sum of the coefficients does not need to be as significant. In this
rescarch, our dictionaries, unless otherwise mentioned, are 3 - (20! - ngumpies ) "4mensionetity. basis
functions in size.

Through the study of these two major methods, the accuracy of the model, the construction
of the model, and the limitations of the model will be discussed for cach example ranging in

dimensionality and complexity.

1.3 Outline

This rescarch forms the foundation of residual minimization through optimization routines [1],
develops variations in minimization problems that leads to sparsity, elaborates on further model
approximation improvements through global-local approximation mapping, and reviews the
achicvements and application of this rescarch.

In chapter 2, the foundation of error minimization will be discussed, and the least squares [3]
process will be developed. Using various examples, global models will be made and the ability
of cach to approximate the signal and form predictions of the signal behavior will be analyzed.

To achicve a basic understanding of the limitations of the 2-norm minimization posed by the



least squares, a standard dictionary will be used.

In chapter 3, an over-complete dictionary will be utilized, and sparse solutions will be formed.
The tradeoff between lower number of cocfficients (cardinality) and low 2-norm error will be
observed. Using convex optimization routines [4], emphasis constraint values for the minimiza-
tion problem will be investigated.

In chapter 4, regional approximations of signals will be investigated. These regional approx-
imations will be globally mapped and combined using smoothing functions [5]. The tradecoff
between lower global 2-norm error and lower computational time will be observed - and com-
parcd to the former global models.

Chapter 5 will review the methods of the previous three chapters, and compare the advantages
for cach in the proposed examples. Further examples will be provided to illustrate the effective-
ness of the methods developed - as well as opening the door for further research and concluding

remarks.
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Chapter 2

Least Squares Method

2.1 Introduction

The concept of Least Squares [6] 7] is introduced in this chapter. Least Squares has many
applications, including but not limited to curve fitting, model realization, and parameter iden-
tification. It is a procedure commonly used for finding the best-fitting curve to a given set of
points. If a signal has a normally distributed error, the least squares solution represents the
most likely solution.

The Least Squares method minimizes the sum of the squares of the residuals (the perpendicu-
lar distance from the points to the curve). This makes the solution continuously differentiable,
such that a minimization of the least squares can be established (scen in section A.3).

Least Squares grew in popularity when used in accurately describing the movement of celestial
bodies [8], such that ships could better navigate open scas. It was shown that a combination
of celestial observations was more reliable than many individual observations - and a simple

Least Squares aided in developing this “best” observation.



Only cighteen years of age in 1795, Carl Friedrich Gauss has been credited for pioncering the
fundamentals of least-squares analysis [9]. Later, the first well-known scientific demonstration
of these principals was when Giuseppe Piazzi accurately tracked the position of the comet Ceres,
even while it was made unobservable by the sun’s glare. At the time, Gauss was then 24 years
old, and his method of Least Squares outshone the nonlinear equations of planctary motion
developed by Kepler. Though Kepler’s model better understood the underlying dynamics of
the system [10], Gauss’s model more accurately determined the position of Ceres when it was
observable again, 40 days later.

Similar to Gauss’s success, the Least Squares method will be implemented to approximate
multi-input single-output systems, without actually understanding the underlying system dy-
namics. Measurements and models are never perfect, and will always contain some errors (v).
The measured value of the truth z is denoted . Estimated values (z) arce found using the
measurements, as well as the model formed from the measurements. This model too has a

residual error (7). Therefore, if # is measured, the following equations are typically used:

measured true value measurement error
X = T + U
measured cstimated value residual error
X = X + T

Both the true value () and the measurement error (v) arc unknown, unlike the estimate
(7) and the residual error (r), which are known explicitly. Thercfore, the measurement and the
residual are used to form the estimation.

In the Lincar Least Squares modecl, approximations arc formed using lincar cocfficients as



follows:

measured output value truth model measurement error
T
U = > hi-x; it V;
i1
estimated output value estimated model

Yi

™
E h,i . .’f:i
i—=1

It is assumed that there is an error between the measured output and the estimated output.

This is known as the residual and is defined as follows:

residual error measured output estimated output
Tj = Yi - Yi

Now the following identity can be considered:

measured output value estimated model residual
1
Yi = > hi- & oo
i1

This can be simplified as a matrix operation in the form

y=H%+r (2.1)



where

.
y = Y Y2 Yno1 Un = mecasured output
T
r = L Ty o Thpoq Th = residual errors
.
X = X X o X1 X = cstimated x - values
hl,l hlfz Tt hl,m—l hl,m
hz,l hzfz Tt hz,m—l hZ,m
H = : : : : = basis functions of model
h’n—l,l h’n—l,Z e hn—lfm—l hn—l,m,
h’ml h’nQ T l]I:"'n',,m—l h’n,m

In principle, the Least Squares sclects an optimum choice for the unknown parameters of z

that minimize the sum of the square of the residual given by

This can be expanded, by submittingr =y —y =y — HX to get
1, P
J = §(y1 y — 2y H% + X' H'H%)

Optimality would then have a necessary condition that the first derivative is zero

aJ 1. . -
— Z(—25"H +2H" H%
pr 2( y H+ X)

Hry
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T ;
(Ox —H'Hx - H'S (2.2)

This is known as the Jacobian - and can be set equal to zero as follows:

H'H%x - H'5 =0

H'H%x = H'y
(H'H) 'H"Hx = (H"H) 'H"y

x=(H"H)'H'S (2.3)
The sufficient condition states that the second derivative is positive definite

0*J

_ T ¢
s = H'H (2.4)

This is known as the Hessian. The following examples will utilize this analytical development

to develop approximations and predictions for signals of varying dimension.

2.2 1-D Examples

To explore the principal of Least Squares, simple 1-D examples are posed that will later motivate

further theoretical developments. As developed in equation 2.3, the Least Squares approxima-

11



tion is formed by x = (H"

H) 'H"y

Orthogonal polynomials [11]| are generated, as scen in

Appendix B, and are used as the basis functions. Also in Appendix B, the first 11 polynomials

arc shown in table 2.2.

Table 2.1: Orthogonal Polynomials

Order Polynomial

0 1
1 T

21
2 :r:‘ 3
3 rh— 2z
4 :]’,‘4 o f__‘:,L.Q + - ]
5 z° — L1? —|—

6 154 2 - L
S T
7 rl — A5 4 —;:r‘
] s e, P4 213 7
TR e W, ey
( 9 7 6 5 1 .3
9 r — 2+ =10 — =17+ e T

1; 85 2 % 213 15

10 710 _ TS—I— ém T4+ 31 _ 63
: ’ 19 3237 323 11997 T 16189

The orthogonal polynomials are plotted in figure 2.1.

The advantage of orthogonal polynomials is that they guarantee lincar independence of

the columns of the H matrix when used to form inputs.

As the columns of the H matrix

become orthogonal, HY H becomes diagonal. Generally speaking, an input is expanded using

the polynomials, across the columns of the H matrix, and the coefficients weight this expansion

to form an approximation. The following examples are a demonstration of that principle.

2.2.1 Example 1

This example hopes to illustrate the capabilities of the

Least Squares method when

approxi-

mating a signal using the orthogonal polynomials described above. The signal for this example

is illustrated in figure 2.2.

12



Value

-1

Orthozomal Basis Functions
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Ordar 2 Crder

-5

Figure 2.1: The orthogonal
examples in this chapter.

i
-
.

i

1

-4 3 -z -

Position

(a) Orthogonal Basis Functions

polynomials form a basis for the Least Squares

0 5
Position

(a) Example 1: Original Data

2

approximation

Figure 2.2: In this example, the original function of 1.1-(1—z—2-2%)-¢ 2 is used to gencrate

the data.
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In this example, both noise amplitude and number of polynomials were varied. In figure

2.3, a typical approximation is illustrated.

Exzmpls 1 Approwimatad Dtz using 10 erder polynomials and 0 nodze for §.4092 ermor Ezample | Approwimated Data using 10 arder pohynamials and 0 75 noise for 13 4191 emar

e Ciriginzl Data e Ciriginzl Oata
= = = Approximated Dats = = = Approximated Dats

r
-
"

= - R i

Position Position

(a) Least Squares Approximation using 10th order (b) Least Squares Approximation using 10th order
polynomials and to approximate the signal with 0 polynomials and to approximate the signal with
noise .75 noise

Figure 2.3: These two plots show the Least Squares approximation using 10th order polynomi-
als, both without noise and with noise.

As scen in figure 2.3, the approximation is not perfect. In fact, there is almost always some
degree of error. Figure 2.4 evaluates the 2-norm error of the approximation with respect to the
true signal, varying noise input and polynomial order.

Though it is seen that decreasing noise and increasing polynomial order allows for a better
approximation, it is seen that using more than 11 polynomials no longer has a significant im-
provement on crror minimization. To further explore error minimization techniques, the least
squares error will be compared with 2-norm error minimization using convex optimization lan-
guage, CVX [12]. This method is compared to the analytical least squares, and section A.5
shows it produces the same results.

In Example 1, the Least Squares method was evaluated while approximating a 1-D region. Lim-

14
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=

e
=

FApproxination Frror

0.4

—
— 08

-

10 -
15\\/‘? 0.4

20 0 ;
Polynomial Order Eror Of Signal Polynomial Order

Standard Deviaion of Approximation Frror

Error Of Signal

(a) Standard Deviation of the Approximation Er- (b) Standard Deviation of the Approximation Er-
ror (Approximated vs Noise Free) ror (few samples)

Figure 2.4: The error represented in this plot is the standard deviation of the error of the
approximation to the original signal without noise. It is seen that decreasing signal noise and
increasing polynomial order forms a better approximation with few samples (= 25), but with
more samples (/ 1000) increasing polynomial order alone forms a better approximation.

itations were shown by decreasing the number of data points, and increasing the measurement

noisc. For this example (as with most examples), it was scen that the approximation exhibited

little improvement beyond a certain number of basis functions.

2.2.2 Example 2a: 1-D Stock Market Approximation

Example 2 focuses on using a partial data set for training, in an attempt to reproduce the full
data sct. An casy way (and profitable way) to demonstrate this principle would be through
a stock market model. As seen in 2.5, the Dow Jones Industrial Average closing price is the
signal to be approximated. The same orthogonal polynomials from Example 1 are utilized, but
now only part of the data set will be used to gencrate a model. In this example, 25 days are

predicted, while varying the number of days in the training set and the number of orthogonal

polynomials.
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135

DTV alue

125

o 20 -1‘0 60 SIO 100 III{O 140
Day Number
(a) Dow Jones Industrial Average Closing Price
Figure 2.5: The original data, which consists of the most recent Dow Jones Industrial Average
closing price

All but the last 25 points (note the vertical line toward the right) were used in creating a
model. The model was then used to evaluate the entire data set as seen in figure 2.6.

As scen in figure 2.6, there is an error in the approximation. This is due to high frequency
noise, and limitations of the polynomial approximation. The error appears greater in the
prediction region (to the right) of the model. This is verified by figure 2.7, which shows the
Standard Deviation of the Error with respect to number of polynomials and size of training
data.

As scen in figure 2.7, the standard deviation of the error of the prediction (the reconstruction
of the data not used in training) is greater than that of the approximation. In fact, the prediction
crror accounts for much of the error of the global approximation. In Example 2b, the goal is
to lower the error of the prediction by weighting the value of the training data, or the error
between the model and the original data, such that the model has less error near the region of
the prediction.

Though this Example has, in some cases, reasonably approximated and predicted the closing
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Day Number

(a) Approximation using 7 polynomials and 300
days to train the model

Figure 2.6: A sample approximation showing how training data can be used to form a prediction

signal.

of Prediction

W T 5
300 0 Polynomial Order .
Days In Training ) Days In Training
(a) Standard Deviation of Prediction Error (b) Standard Deviation of Approximation Error

Figure 2.7: For the global approximation, the Standard Deviation of the Error decrcases as
polynomial order decreases and number of training days increases. This is widely influenced by
the model’s ability to form a prediction.
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price of the Dow Jones Industrial Average, further improvements can be made on the prediction.

2.2.3 Example 2b: 1-D Stock Market Weighted Approximation

In section 2.1 it was established that an analytical solution to the Least Squares exists in the

form X = (H"H) 'H"y which minimizes J = ir’r. The problem with this formulation is
that it gives equal weight to the approximation error. If a prediction of future data points is
to be made, more emphasis needs to be placed on minimizing the error closest to the predicted
points.

As explained by Crassidis and Junkins [6], emphasis can be giving using a weight matrix, which

is a diagonal matrix in the form

Welosest 0 0 0 0

0 Weloser 0 00

W= 0 0 Welose 00
0 0 0 10
0 0 0 01

In order to prevent the analytical solution from developing a slightly singular HYW H, the
diagonal clements of W must not be close to zero. Also, H must have a greater number of
rows than columns. This weighting matrix forms a minimization of J = %ri Wr, which like

Appendix A and equation 2.3, will give the analytical solution of

%= (H"WH) 'H'W¥ (2.5)

The problem is setup in the same manner as Example 2a, and as scen in figure 2.8, an
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example of improvement in the prediction is seen with low-order polynomials

4
1671 157
w— Original Data w— (Original Data
= = = Approximated Data with error = 6983 " = = = Approximated Data with error = 693
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DIV alue

135

DIV alue

140 160 180

115 . . : . .
0 20 40 60 80 100 120
Day Number

115 . . : . . . . ;
0 20 40 60 20 100 120 140 160 180
Day Number

(a) Approximation using 5 polynomials and 150 (b) Approximation using 5 polynomials and 150
days to train the model with a weighted analytical

days to train the model with NO weight
solution

Figure 2.8: When forming a prediction, there are advantages to weighting the error minimiza-
tion closer to the predicted points.
When compared in figure 2.9, it is seen that the standard deviation of the weighted pre-

diction error is only slightly less than the unweighed, while the standard deviation of the

approximation crror is slightly greater.
Though weighting improves the prediction error slightly, the fact that the prediction error
is still very high indicates an adequate model has not been developed. To better understand

the system, a different set of basis functions should be used or more inputs may be utilized in

model development. The following examples utilize multiple inputs to develop a model.

2.3 2-D Examples

For 2-D examples, the basis functions (which are the same as in the 1-D examples) are combined,

as cach dimension (input) can act independently or collaboratively. The H matrix must reflect
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Figure 2.9: The difference between (average prediction error - average approximation error) is
smaller when the least squares is weighted near the prediction.

that as well. Table 2.2 shows a typical combination of two inputs, with respect to desired order.

The each row of the H matrix will contain all orders up to the desired order.

Table 2.2: Relationships of Increasing Order for 2 Dimensions

Order  Relationship Formed

0 1

1 T Y

2 72 Ty y?
3 2 22y x-y? Y

higher

An algorithm to develop multi-dimensional relationships as such is explained in appendix
C. For the next two examples, orthogonal polynomials will still be utilized, as seen from the

1-D examples. They will be combined using the multi-dimensional relationships discussed.
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2.3.1 Example 3: “Monster Function”

The first 2-D example is a simple benchmark function known as the “Monster Function”. The

original function is displayed in figure 2.10.

Elevation

— /“ 0

T

; s Latitud.
Longitude atitude

=]

(a) Example 3: Original 2-D function

Figure 2.10: The original function is f = (?)_J:zjzit(]l_i:)g_l + [ju—8}2+?u:—5jz+1 + (!;_8)2+i1,_8}2+1

This example was approximated, varying the number of polynomials along with number of
samples. An example approximation, while keeping number of samples consistent) is shown in
figure 2.11.

Figure 2.11 demonstrates that a better reconstruction can be formed with an increase in
polynomial order. This is confirmed in figure 2.12, and also demonstrates the advantage of
having a greater number of training points. The standard deviation of the error is plotted in
figure 2.12.

It is seen that in general, increasing polynomial order and increased number of samples
decrcase the standard deviation of the error. The number of samples has a greater influence
when the number of basis functions is high - almost as high as the number of samples. When

the number of measurements arc less than the number of basis functions, the problem is said
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(f) Approximation formed with 6 polynomials

Figure 2.11: When increasing the order of polynomials, the approximation better reconstructs
the original data as scen in figure 2.10.

22



rd Deviation ol Appr

//- ’
=
. / 50

5 =
- 0 100 Training Points
Polynomial Order

,_.
=)
1
=
I-
{
]
=]

0T — e
.

Slan
=
rI
f
/
L
(=]

. Training Points
Polynomial Order faung Somts

(a) Standard Deviation of Approximation Error (b) Standard Deviation of Approximation Error
(zoom)

Figure 2.12: The standard deviation of the approximation error decrcases with increased poly-
nomial order, and decreases slightly with increased training points.
to be “under-defined” - and it is difficult for the least squares to form a solution. It is scen that
at high polynomial order and low number of samples, that the error increases for this reason.
The “Monster Function” was a very basic benchmark problem, with only three main fea-
tures to approximate. As the number of polynomials increased, the standard deviation of the
crror decreased with no notable tradceoff between number of polynomials and error (it is hy-
pothesized that there would be a tradeoff with a higher polynomial order - or a different set of
basis functions). Still, for this simple model, the least squarcs approach does a reasonable job
developing an approximation model, but this next example will consider a more complicated

actual model.

2.3.2 Example 4: Moon Data

The second 2-D example is a much more complicated signal. This signal represents the terrain

of the moon in a certain region, as shown in figure 2.13.
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(a) Example 4: Original 2-D function

Figure 2.13: The Original Moon Terrain Data

To highlight the capabilitics of least square model development, polynomial order and num-
ber of training samples were varied. Samples approximations arc given in figure 2.14. Even
with a computationally-expensive 20th order polynomial basis function set, the approximation

still lacks many of the signal’s features.

Elevation
Elevation

-0.23

0.25 / -0.225
0.24?\.\ -0.23
024 / 0235
0.23?\ -0.24

023 T~ -0.245

Longitude 025 0 Latitude Longitude 0225 -025 Latitude

(a) Approximation using 5 polynomials and 10x10 (b) Approximation using 20 polynomials and
measurements 50x50 measurcements

Figure 2.14: As scen, increasing the number of polynomials vastly improves the approximation
model - as does increasing the number of training points

As scen from figure 2.14, improvements in the model are made by increasing the polynomial
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order, and less significantly, the number of training points. The standard deviation of the error

is plotted in figure 2.15.

,_.
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s
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Palvnamial Order Number Of Traming Measw Polynomial Order

(a) Standard Deviation of Approximation Error (b) Standard Deviation of Approximation Error
(zoomed in)

Figure 2.15: The standard deviation of the approximation error decrcases with increased poly-
nomial order, and decreases slightly with increased training points.

It is scen that in general, increasing polynomial order and increased number of samples
decrease the standard deviation of the error. It is seen that at high polynomial order and low
number of samples, that the error increases. This is, again, because the number of measurements
approaches the size of the model, and it becomes more difficult for the least squares to form a
solution. This is one of the key advantages of sparsity, and will be discussed further in Chapter

3.

2.4 n-Dimensional Example

There are certain models, that when varying in dimensionality, or number of inputs, better
approximate the system in question. For this example, the stock market model is revisited.

This time, the basis functions are not used to expand the input, as the computational burden

o
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is too great and will lead to more columns than rows of the H matrix, making the problem
un-accomplishable through least squares. Instead, previous state data from the signal will be

used as the input.

2.4.1 Example 5a: multi-stream n-D Stock Market Approximation

In this example, the Dow Jones Industrial average is treated as a finite difference model, indi-
cating that the previous states have an influence on the current state. The original data is scen
in 2.5 - again, the closing price.

In this first example, the model is posed as follows:

C'Ioseiuduy = Iy OPCNyesterday + g - h?’ghycslcrduy + x3 - lo“"yusim‘duy + x4 CIOSC?,‘(.‘.SLCTU:{L?,‘
+z5 - OPCNday—be fore—yesterday + zg - hzghdﬁy—z‘m fore—yesterday +z7- ’!O?Uday—bc fore—yesterday

+xg - Closeduy—br:fm'(:—yusim'du.y e

where close is the closing price, open is the opening price, and so on. Each day (n)’s prices
represents a dimension, an input, while cach price in the day represents a stream. Thercfore,
this model has 4 strcams and n*4-dimensions. Examples of this type of model generation are
given in figure 2.18. The standard deviation of the error is plotted in figure 2.16.

In this example, it is shown that low dimensionality is of an advantage in building a model
- indicating perhaps that future data is based mostly on more current data. This is further
emphasized as in instances of low dimensionality, the standard deviation of the prediction error
is lowest at 100 days of training. Though this example includes all possible data to build the
model, it will be investigated how using only one stream - the closing price only - will build a

better prediction.
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Figure 2.16: From this analysis, fewer dimensions and more predictions form a better prediction
approximation modecl.

2.4.2 Example 5b: single-stream n-D Stock Market Approximation

This example only considers the closing prices. Previous states are the input and the current
state is the output, thus making a finite difference equation. In this example, the model is

posed as follows:
CIOSC[UGEH.?; =Ty CEO“;Cy(:,‘;tm'du.y + Ty - C"l-:oscday—be Jore—yesterday * °°

Each day (n) used to form the model represents a dimension. The standard deviation of
the error is plotted in figure 2.17.

It is seen that the standard deviation of the error is lower when only a single-stream model
is used. The following plots in figure 2.18 compare the two approaches through examples. It is
noted that the standard deviation of the prediction would most likely be more comparable to

that of the approximation if the prediction into the future was fewer states.
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Figure 2.17: From this analysis, 40 days and 200 mcasurements best form the prediction model,
while a high number of measurements and low number of days forms the best approximation
model.

2.5 Conclusion

The least squares method for model development has many advantages, as demonstrated from
the examples above. In some examples, a problem of analytical rank deficiency is faced when
the number of parameters in the model approach the number of measurements. Also, all these
examples (excluding example 5) used orthogonal polynomials, when other basis functions could
be used. Adding more basis functions would increase the number of parameters in the model,
thus the least squares method may no longer be an adequate method for model development
for the rank-deficient reason mentioned carlier. In chapter 3, a larger set of basis functions are

used, but some are eliminated to form a sparse solution.
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Figure 2.18: It is shown that a better prediction is formed when the model uses days closer to

the time of prediction.



Chapter 3

Sparse Approximation By Convex

Optimization

3.1 Introduction

In chapter 2, the concept of least squares was introduced. Limitations of using a least squares
solution were scen for an over-defined problem, in which the number of samples was less than
the number of basis functions. For an algorithm to pick the best basis functions to reconstruct
a signal, very large dictionary should be used - thus increasing the opportunity for the signal’s
dominant function(s) to be present. Using such a dictionary makes a problem over-defined,
so a different approach must be used to determine the function weighting that produces the
minimal residual. Posing a least squares problem as an optimization routine instcad of using
an analytical solution will have some computational advantages, but will still exhibit many of
the same difficulties. To select the best basis from a large dictionary, sparsity is enforced.

The intent of sparse approximation [13] is to approximate an n-Dimensional signal over a
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redundant sct of functions, which are known to be the 'dictionary’. The cardinality, or number
of elements in the set, would greater than the number of measurements. This makes the
dictionary over-complete, and the goal is to find the minimum number of non-zero coefficients
which weight the functions in the dictionary, to form the sparsest [2]| solution. To accomplish
this, the problem is posed as an optimization routine, and lincar programming [14| methods are
utilized to find only one solution. Lincar programming is the process of minimizing an lincar
cquality subject to a finite number of constraints and has application in solving a diverse range
of combinational problems. Using the Matlab modecling langnage CVX [12], objectives and
constraints arc specified using standard Matlab syntax. In this way, penalties can be placed on
the objective function if the number of non-zero cocfficients are too great, or the error, relative
to the the least squares solution, is too large.

This chapter details the results of various optimization approaches to achicve a sparse solution.

3.1.1 Basic Definitions

The following basic descriptions will be used to vary the optimization routine to cvaluate a

sparse solution:

Ty

T3
If a vector exists in the form z =

mn

Cardinality The cardinality of a sct is a measure of the “number of clements of the set”.

n 0 if *rf =0
|(1 = E

=1 ifa? >0

T

Norm-0 (written |-||,) The 0-norm is given as |
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Norm-1 (written |-||,) The 1-norm is given as |

T

=2V

Norm-2 (written ||-||,) The 2-norm is given as |

3'?|2:

Norm-infinity (written ||-||) The infinity-norm is given as max(z,.)

3.2 Convention

Generally, the set of basis functions is defined as A (this is the same as H from Chapter 2),
and the cocfficients z (same as ). Thus, the measured output b (same as g from Chapter 2)
can form the relationship of

A-z=b (3.1)

This would be the ideal solution, but with most any reconstruction of a signal, there is an error,

which can be expressed as A - x — b. Because there are many solutions to sct this error equal
. T .

to zero, the least square solution | ||A -z —b||? or [A-z —b]" [A-x — b], is often scen as “the

best solution”. The goal then, is still to minimize

|z||,, while trying to achicve an crror close
to that of the solution (z) that minimizes ||A -z — b||2. Since b and A arc given, the variables

involved in this minimization are the variables of the vector z.

3.3 Experimental Setup

An over-complete dictionary is formed using Polynomials, Cosine-based Functions, and Exponent-
based Functions. These types of functions are described in figure 3.1. Not only are the example
functions used, but also cach function shifted for cach measurement point. This means that

there are MANY more columns than there are rows, such that a least squares approach would be
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impossible. Also, with multi-dimensional inputs, the basis functions are combined as described
in appendix C.
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Figure 3.1: In this example, an over-complete set of basis functions is used, involving Polynomial

functions, Sine-based functions, Cosine-based functions, and Exponent-based functions. When
combining these sets, and over-complete dictionary is formed.



3.4 Problem 1

Given the definitions above in section 3.2, it is scen that the absolute error of the least squares
can be be defined as norm(A -z — b, 2). This is the cerror that when minimized, produces the
“best” solution. Since the dictionary is highly over-complete, a simple pseudo-inverse will not
yield meaningful coefficients due to the computational limitations of Matlab. Therefore, CVX
was used to solve for the 2-norm coefficients, and these coefficients were assumed to yield the
optimal solution.

In this example, the 1-norm of the cocfficients is minimized, subject to the constraint that
relates the allowed error of this minimization to the optimal solution. The problem is posed as

follows:

cvx_begin
variable coeffs2(y)
minimize (norm(A*coeffs2-b,2));

cvx_end

cvx_begin
variable coeffs(y)
minimize( norm(coeffs,1));
subject to
norm(A*coeffs-b,2) <= norm(A*coeffs2-b,2)*gamma;

cvx_end
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3.4.1 Example 1.1: 1-D benchmark function

To test the development of sparsity, and to sce its effects, a 1-Dimensional example is used.
The original data is found in figure 3.2. This is the same function as seen in section 2.2.1 of
1L1-(1—z—2-2%- P_TZ Varying -, it is scen the effects on the approximation.

In this example, the benchmark function is very simple, and therefore casy to approximate.
When relating the norm-1 of the coefficients to the norm-2 of the error, a larger value of ~
is required to produce any noticeable difference. The advantage of this optimization routine,
however, is that it dramatically reduces the number of model coefficients through only a modest
increase in . This is further illustrated in figure 3.3.

When increasing «, the number of coefficients drops to, and remains level at 15, while
the standard deviation of the error increases. If thought of in terms of cardinality - standard
deviation as a heuristic parameter to minimize to form the best sparse approximation, one
would imagine an algorithm would adaptively sclect this development. It is therefore seen that
~v = 4 produces an adequately sparse solution, with 15 coefficients weighted in such a way that

the error of the approximation is relatively small.

3.4.2 Example 2.1: 1-D Stock Market Model

The second model, is again the stock market model, which approximates the Dow Jones Indus-
trial average. In this example, a set of data is used to develop a model, which forms a prediction
signal. As scen in figure 3.14, there are immediate advantages to a sparse approximation.

As illustrated in figure 3.15, the least squares poorly developed a prediction model, while the
sparse approximation reasonably developed a prediction model. In fact, even with 7 cocfficients,

a reasonable approximation and prediction was formed.
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Figure 3.3: It is scen that an adequate model is made with 15 coefficients, found with v = 4.

Sparse approximations have shown to reasonably develop approximation models for one
dimensional signals. For less complicated models (as seen in example 1), higher values of 5
arc used to decrcase the number of cocfficients, but with a more complicated model (such as
example 2), lower values of 4 can adequately decrease the number of coefficients used to build

an approximation model.

3.4.3 Example 3.1: 2-D “Monster Function”

Now multi-dimensional signals will be investigated. The first example is the benchmark func-

tion, with few complications. This example uses a benchmark function, e -Il-?l—:c)z =+

5 + 5
W82 52+ | (g8 (s 821"

The results from low-+y approximations arc shown in figure 3.6,
in which lower values of v produce a reasonable approximation.

As scen in figures 3.6 and 3.7, lower values of 4 form a very good approximation, while
higher values of gamma, in the range of 4 and higher, utilize too few basis functions to form a

rcasonable approximation.
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Figure 3.5: It is scen that an adequate model is made with 7 cocfficients, found with v = 2.75.

As scen in figure 3.17, the number of cocfficients does not increase dramatically through

increasing v beyond 3.75, while the standard deviation of the error continues to increase.

3.4.4 Example 4.1: 2-D Moon Terrain

A more complicated signal is the moon terrain data. This is the same data as scen in figure
2.13. In figure 3.9, it is scen that for low values of v, a recasonable approximation is formed.

Though the approximations in figure 3.9 shows a degradation in the approximation through
increasing allowed crror (by increasing ), it is interesting to notice what happens after a
trade-off point as seen in figure 3.10.

Figure 3.11 plots the number of cocfficients and the standard deviation of the approximation
formed with respect to 7.

Though a reasonable model has been formed by finding the minimum number of coefficients
in the model approximation, it is scen that the optimization statement will encourage the error

to increase lincarly while varying + until eventually no coefficients are weighted. For a better
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Figure 3.8: The results indicate that after v = 3.75, there is relatively no change in the model.

approximation development, alternate statements are investigated.

3.5 Problem 2

In this problem, the 2-norm error and the number of cocfficients are minimized simultancously.

In this problem v enforces the emphasis that is placed on minimizing the 1-norm of the coef-

ficients with respect to the 2-norm error of the approximation. The optimization statement is

posed as follows:

cvx_begin

variable coeffs(y)

minimize( norm(coeffs,1)*gamma+norm(A*coeffs-b,2));

cvx_end
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Figure 3.11: The results indicate that after 4 = 2, there is relatively no improvement in the
model.

3.5.1 Example 1.2: 1-D benchmark function

To test the development of sparsity, and to sce its effects, a 1-Dimensional example is revisited.
Varying -, it is scen the effects on the approximation.

From figure 3.12; it is clear to sce that after v = 7, the approximation becomes noticeably
less accurate. In figure 3.13, it is scen that the number of cocfficients has been cut in half, yet
the standard deviation of the error is still very low.

Comparatively, it is casicr to judge the which basis functions can be immediately rejected,
by increasing 7 only slightly to achicve a sparse approximation. Though this became clear for
a simple model, more complicated models will be tested to see if this same advantage is truc if

the complexity of the signal is increased.
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Figure 3.13: It is scen that an adequate model is made with 15 coefficients, found with v = 4.

3.5.2 Example 2.2: 1-D Stock Market Model

The second model, is again the stock market model, which approximates the Dow Jones Indus-
trial average. In this example, a set of data is used to develop a model, which forms a prediction
signal. As scen in figure 3.14, there are immediate advantages to a sparse approximation.

As illustrated in figure 3.15, the least squares poorly developed a prediction model, while the
sparse approximation reasonably developed a prediction model. In fact, even with 7 cocfficients,
a reasonable approximation and prediction was formed.

Sparse approximations have shown to reasonably develop approximation models for one
dimensional signals. For less complicated models (as seen in example 1), higher values of 5
arc used to decrcase the number of cocfficients, but with a more complicated model (such as
example 2), lower values of 4 can adequately decrease the number of coefficients used to build

an approximation model.
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Figure 3.15: It is scen that with the immediate addition of sparsity constraints, the number of
cocfficients is cut in half and the sparse solution with the lowest error is formed.

3.5.3 Example 3.2: 2-D “Monster Function”

Again multi-dimensional signals will be investigated. The results from low-y approximations
arc shown in figure 77, in which lower values of v produce a reasonable approximation.
As seen in figures 3.16, lower values of 4 form a very good approximation, while higher values
of gamma, greater than .25, utilize too few basis functions to form a reasonable approximation.
As scen in figure 3.17, the number of cocfficients does not increase dramatically through

increasing v beyond 1, while the standard deviation of the error continues to increase.

3.5.4 Example 4.2: 2-D Moon Terrain

Again, this is the same data as seen in figure 2.13. In figure 3.18, it is scen that for low values
of v, a reasonable approximation is formed.
Figure 3.18 that by increasing 7, only the dominant features of the moon’s gecometry are

captured. Figure 3.19 plots the number of cocfficients and the standard deviation of the ap-
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Figure 3.17: The results indicate that after v = 1, there is relatively no change in the model.

proximation formed with respect to 7.

The problem with a more complicated model is that a slight increase in v will cause a large
increase in the standard deviation of the error. This is because there are so many functions
that compose the original data, that climinating cven the less significant ones contributes much

CITOT.

3.6 Conclusion

T

It has been demonstrated that just by adding ||z||, to the minimization routine, a certain
amount of sparsity is enforced. A similar advantage is found in Chapter 4, where sparsity
is promoted simply through regionally approximating the signal. Though both optimization
methods discussed can further promote sparsity, the second has the advantage of retaining

|A-x —b||, in the minimization routine, rather than as a constraint. This can allow for a

trade-off to be pre-sclected, rather than found heuristically.
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Chapter 4

Global-Local Approximation Mapping

4.1 Introduction to Global-Local Mapping

[ chapter 3, a sparse solution gave way to an approximation that utilized only the most dom-
inant basis functions. This was enforced in tradeoff with error. Fewer basis functions led to a
greater residual. In this section, the goal is to maintain fewer basis functions, but to decrcase
the residual through regional approximation. If regional approximation is successful in accom-
plishing this task, even fewer basis functions may be utilized, and sparsity may be enforced
through global-local approximation.

Signal approximation and reconstruction has a varicty of different approaches. Though an en-
tire signal could be reconstructed by a single approximation, this would be a computationally
taxing process for larger data sets and may neglect regional characteristics [15] if an insufficient
quantity of basis functions is used. An alternative method has been proposed in which the
signal is regionally approximated [16], and then sequentially combined to reconstruct [17] an

approximated signal. The advantage of a regional approximation is that fewer basis functions



arc needed to achieve the same level of global error. This is seen in figure 4.1, where low-order

polynomials arc used to regionally approximate a signal.

1019.4 Original

10193 Region 1 Approx
Region 2 Approx

10192 = = = Weighted Approximation

value

21 -05 0 05 1 15 2
X—position
(a) Sample Regional Approximation
Figure 4.1: This complicated signal is approximated using two low-order regional approxima-
tions.

As scen in figure 4.1, the two regional approximations are blended together to form a global
approximation [18]. This is accomplished using weighting/smoothing functions [19], whose
derivation is described in Appendix D, as first proposed by Singla and Junkins [5|. Figure 4.2
shows how two weighting functions blend adjacent regions for a 1-D signal.

Figure 4.2 shows some important features [20] of the weighting functions. First, for higher
order weighting functions the higher order derivatives are zero at the center of the region and
at the limits of the region. Seccond, the weighting evaluates to 1/2, half way away from the
center of the region. Third, and most important, the sum of all adjacent regions is always 1.
As scen in figure 4.3,

Higher dimensions will not be reviewed in this chapter, but the same smoothing algorithm
still applies. Figure 4.4 illustrates how the number of approximations increase exponentially

(as an exponent of 2 in this case) based on the dimensionality of the signal.
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Figure 4.3: In two dimensions, the key properties of the weighting functions are still valid.

Since it is difficult to display signal reconstructions for dimensionality greater than 2, this

chapter only re-visits Examples 1-4.

4.2 Examples

The following examples use the second problem statement from chapter 3. This problem state-

ment appears in the form

cvx_begin
variable coeffs(y)
minimize( norm(coeffs,1)*gamma+norm(A*coeffs-b,2));

cvx_end

This optimization problem minimizes the number of cocfficients as well as the 2-norm of the
crror. The value of 7 is set very low (v = .01) since it is only required that sparsity exist, as

the sum of the cocfficients will have more weight against the 2-norm will change as the regional



(a) Two adjacent regional centers (b) Four adjacent regional centers

(¢) Eight adjacent regional centers

Figure 4.4: In two dimensions, four centers are used to approximate a region. In three dimen-
sions, cight centers are used to approximate a region. In n-D space, 2" centers are used to
approximate a region.



size decreases in number of data points and the number of regions increase.

The results are given in terms of cardinality vs number of regions, and standard deviation
of error vs number of regions. The cardinality is the global cardinality - how many of the
original over-complete dictionary were used. If a function is re-used, it contributes once to the
cardinality count. This helps recognize dominant regional functions across the global signal.
Standard deviation of error is also a global measure. The error is formed by taking the difference
between the global approximation and the original data. This analysis ensures that results of

varying dimensionality arc comparable.

4.2.1 Example 1: 1-D benchmark function

To test the development of sparsity, and to sce its effects, a 1-Dimensional example is used.

[+

@

This is the same function as seen in section 2.2.1 of 1.1- (1 —z — 2 - 2%) - ¢ 2. Varying the
number of regions, it is seen the cffects on the approximation in figure 4.5.

The continued trend in decreasing the number of basis functions is seen in figure 4.6. In-
creasing the number of regions effectively enforces sparsity.

Figure 4.6 indicates that at 6 regions and 20 basis functions, the model begins to outperform

the least squares approximation with the over-complete dictionary.

4.2.2 Example 2: 1-D Stock Market Model

Using a regional model of one dimension, it is no longer realistic to form a prediction of the
Dow Jones Industrial Average. Instead, this analysis regionally approximates the signal (sce
figure 4.7) in order to find dominant or repeated basis functions as shown in figure 4.8.

The signal was approximated in figure 4.7, but as scen in figure 4.8, increasing the number
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Figure 4.5: Increasing the number of regions allows for a better approximation and a smaller

global dictionary.
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Figure 4.6: Through increasing the number of regional approximations, a sparse approximation
can be formed with less error than that of the least squares approximation. The sparsity of the
approximation is further improved through increasing the number of regions.

of regions only decrcased the error and not the number of basis functions used.

This lends to the conclusion that for complicated or noisy signals, sparsity cannot be en-

forced casily by increasing the number of regional approximations.

4.2.3 Example 3: “Monster Function”

The monster function is a simple 2-D benchmark problem that will show the relationship
between sparsity and number of regional approximations. Sample approximations arc shown
in figure 4.9

From figure 4.9 would appear that the approximation improves quickly by increasing the
number of regions, but only to a point. This is because so much of the signal is the same. This
is confirmed by figure 4.10.

For simple 2-D models, a tradeoff is quickly found as increasing the number of regions does
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Figure 4.7: Due to the complexity of this signal, sparsity scems only enforced by the opti-

mization statement alone, since many of the same basis functions are cyclic and are dominant
throughout.
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Figure 4.8: Through combining regional approximations it is seen that a better approxima-
tion can be formed than the global least squares. The number of coefficients, on the other
hand, shows little improvement through increasing the number of regions. This is due to the
complexity of the signal in question.

little to enforce sparsity or improve error.

4.2.4 Example 4: Moon Data

The moon terrain is a complicated 2-D problem that will show the advantage of using regional
approximations.
Figures 4.11 and 4.12 show how cven with using 5 basis functions, the approximation im-
proves through increasing the number of regions. This is further illustrated in figure 4.13.
Earlier it was stated that for complicated or noisy signals, the enforcement of sparsity was
not enforced through regional approximation. Now that a low-noise complicated signal has

been approximated, it is seen that sparsity is enforced through regional approximation.
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Figure 4.9: With 25 regions and 20 basis functions, a scemingly reasonable approximation is

formed.
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Figure 4.10: Sparsity is enforced successfully through regional approximation, as 20 basis func-
tions accurately form the model.

4.3 Conclusions

Increasing the number of regional approximations does enforce sparsity, but this is accomplished
more casily for noise-free signals, and secondly, for less complicated signals. This principle has
been demonstrated for 1-D and 2-D samples, but the algorithm is extensible in n-Dimensions.
Due to computational limitation and understanding of the output, higher dimensional examples

were not reviewed in this resecarch.
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Figure 4.11: When only using 3 basis functions, it is seen that increasing the number of regions

better approximates the moon’s surface.
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Chapter 5

Applications, Review, and Conclusions

5.1 Introduction

In previous chapters improvements in signal modeling were introduced. Beginning with least
squares, enforcing sparsity through optimization routines, and enforcing sparsity by regional
approximation, it was shown that an algorithm could select the best basis functions (or at
least adequate ones) from an over-complete dictionary. This chapter is a set of final thoughts
that recaps on this rescarch, discussing its applications, as well as the direction for future
rescarch. As an introduction, least squares approximation showed how a signal could be globally
approximated using a minimization routine. The limitations of this approach were the neglect
of regional features as well as the dependence on a large set of basis functions to produce a
better approximation. Then it was scen that by enforcing sparsity, a small amount of error was
allowed in exchange for a drastic decrease in the number of basis functions used. Having this
knowledge of the dominant functions, sparsity was further enforced by regional approximations

- in which it was seen that in many cases, fewer functions were needed when more regions were
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globally mapped. In this chapter, a critical look is taken at the accomplishments of the current

rescarch, as well as the continued exploration of this exciting branch of study.

5.2 How Much Money have we made?

With all the financial modeling, the ability to accurately produce an approximation has added
incentive. . . profit. Previous chapters have shown the difficultics of modeling a complicated
signal, but this section shows the fruits of that labor. To begin, figures 5.1 and 5.2 show how
the model for the 1-year Dow Jones Industrial Average changes by allowing for more basis
functions.

As secen in figures 5.1 and 5.2, as more basis functions arc allowed to form the model, more
features of the signal are captured by the approximation. Using the dominant basis functions
that the algorithm sclected, it would appear that an adequate prediction is formed. Since
moncy can be made off the transition of the price of a stock or security, predicting how a signal
behaves is a huge advantage.

To understand how profit would be made, a technique known as backtracking will determine
if the buy and sell indicators can indeed obtain a profit. Using the predictions formed by the
model, a buy signal would occur when the derivative in price is positive, and a close signal
would occur when the derivative of the price is negative. If the derivative is zero, the next
day’s derivative is considered. Figure 5.3 shows the results of trading in this trading pattern.

As hypothesized, there are advantages to trade using a sparse model.
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Figure 5.2: After a certain point, the approxigl‘zation no longer improves through the addition

of basis functions.
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In figure 5.3, the time-based portfolio fluctuations are shown, but in table 5.2, the end

results are tabulated.

ticker 50-day ticker change 50-day change in wealth

DJI -9.44 % 1.99 %
SLB -4.21 % 3.57 %
WMT 0.11 % 4.60 %
TGT -9.62 % 5.60 %
PX -7.16 % 5.86 %
GLW -21.86 % -1.36 %
C -11.07 % 21.72 %
CAM -17.55 % 10.23 %
F -20.15 % 13.12 %
MMM 517 % 3.18 %

As scen from table 5.2, in ALL cases, modcl-based trading out-performs the actual ticker
performance. In only case was a loss experienced, but given the spread between the loss the
ticker took and the loss the model-based trading took, there is still a significant advantage to

trading with a model.

5.3 Conclusions

In this section, the accomplishments of this rescarch will be considered, as well as future
directions this rescarch could take. This research lays the foundation for many projects and
developments, as well as provides a benchmark to compare against other model development

methods in the field of system identification.
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5.3.1 What this research has shown

This rescarch has demonstrated the evolution of signal approximation. First, signals were
globally approximated in 1, 2, and n dimensions using Least Squares. Then the Least Squares
approach was replaced by an optimization routine which minimized the 1-norm of the weighting
cocfficients along with the 2-norm of the residual. This led to the advancement of sparsity
(minimum number of basis functions used). Then sparsity was shown to be enhanced through
regional approximations globally mapped to reconstruct the signal.

To accomplish this, a veritable suite of scripts that can reconstruct a signal using cach methods
in 1, 2, or n-dimensions was formed. Signals of 1, and 2, dimensions can be plotted - such that
the end user has a visual sense of the approximation, while signals of n-dimension can only be
observed in terms of error. These scripts were used to analyze five main examples related to
the rescarch and personal interest of the author. In section 5.3.2, further development of this

script suite and analysis using these tools is discussed.

5.3.2 Further Work

In this section, further examples are suggested that will help demonstrate the capabilities of
this rescarch, as well as provide an input output relationship for the system in questions.
This section will also discuss comparable methods in system identification, which have know
advantages and disadvantages. Finally, further developments of the script suite will be proposed

- as well another problem not yet solved by the author.
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Examples to consider

There are many real-world systems that could be modeled using input output relationships
discussed in this rescarch. Two examples will help further the rescarch of the LAIRs lab and
will provide a good sense of the applicability of this rescarch on physical systems.

The two degree of freedom helicopter has two main inputs, main rotor velocity and tail rotor
velocity - that provide a 2-dimensional input. It can be argued that this is actually a 6 dimen-
sional problem with initial conditions of pitch and yaw and pitch and yaw rates being the other
inputs. The outputs in this model, which are orthogonal, and therefore not considered to be
inputs of cach other, are the angular velocities of pitch and yaw. These derivatives can later
be numerically integrated to know position.

The six degree of freedom helicopter has four rotors that can input a velocity to the system.
Position information matters significantly in terms of Hover In Ground Effect (HIGE) or Hover
Out of Ground Effect (HOGE) so all position information is considered an input. Also, all
velocity information is considered. Thus, a 16 dimensional model will be used to approximate
the quad-rotor hovercraft with six degrees of freedom. This problem as 12 outputs as well,
and some of these relationships interact due to acrodynamic and dynamic effects. Thus, this

problem could potentially be a 27 dimensional problem.

Benchmarks

There are a number of different methods that would provide comparable results to those ob-
served by this rescarch. These models would provide a good benchmark for how well the
methods in this rescarch approximate a signal relative to “industry standard” methods.

System ID methods include cigen-realization algorithms using singular value decomposition of
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the Henkle matrix. This basically develops a discrete time state space model that can help
relate inputs to outputs. This allows for every input and output to be related in one state
cquation. Numerical integration can then allow for the understanding of system behavior.
Neural Networks have risen in popularity - particularly in the stock market examples. Like
this rescarch, neural networks weight simple processing clements, which combine to represent
global behavior. In relationship to this rescarch, neural networks not only weight basis func-
tions to form a signal approximation, but also approximation the transition of those weights.
Each time this sccondary type of approximation is formed, it is called a layer. Using this type
of approach, very accurate signal approximations can be formed. On the other hand, having
many basis functions will lead to computational overload. Thus, it will be tough to form a true
comparison, but a relationship between computational time and accuracy tradeoff points can
be assessed.

Knowing the actual properties of a physical system can lead to a dynamic model. From this,
equations of motions can be developed. The purpose of this rescarch is to approximate the
output without knowing the underlying dynamics, so comparing the output of the dynamic
model to the sparse approximation, to the response of the physical model, will provide a good

sense of the advantages of either approach.

Software Releases

Thus far, the other has only provided a suite for multi-dimensional analysis using least squares,
sparsity through optimization, and sparsity through global-local mapping. Further work could
lead to any number of the following releases.

A sparsity GUI could help the end-user visually see the transition of the output approximation

by varying the cardinality or . This would provide a “user optimized” sparse solution through
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visual aid.

A de-noising package would use the principals of this research to create a smooth output of a
measured signal. This will help the end-user better correlate data and allow them to essentially
use less expensive equipment for their measurement.

A real time tracking and prediction package could be developed to assist in guidance and
navigation, or investment, or a wide array of application. In this case, this is a low dimensional
problem, with basic inputs as time or position. If a forecast of data is gencrated, a controller
can respond more rapidly and provide the appropriate inputs for the desired response.

Since complexity of signals was discussed, guidelines for posing the optimization routines should
be developed. A table to give basic v guidelines, or equations for + should be suggested for

future users of the scripts developed by this rescarch.

Adaptive vy

One desire of this rescarch that never saw fruition is an adaptive . This would automatically
determine the best model based on certain criteria. One criteria could be little improvement
in the error subsequent to a decrease in . Another could be a metric of cardinality times
2-norm crror. These methods would be evaluated and the most successful one would lead to

an algorithm that would determine “the best” approximation for any given data.
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Appendix A

Why Least Squares?

The least squares problem has an analytical solution - achiceving a feasible solution when min-
imized. Though the general objective is to minimize error, various other strategies have their
limitations or simply will not achicve a single feasible solution.

As just described in chapter 2, the Least Squares method attempts to minimize the residual
in order to achicve X which achieves the "best fit” approximation. Duc to the advantages of
matrix math, the Least Squares actually has an analytical solution, which is found by taking

the Pscudo-Inverse of the H matrix, which shall be discussed further in A 4.
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A.1 Minimizing the Residual sum

1

To minimize the error, the residual r = ) 9; — h;X could attempt to be minimized. During a
i1

minimization, the derivative is set equal to zero such that :f—; = 0. However, it is scen that

T

r=> @ —h<X
i=1
I 1
dr 1.
o= Z h;
i=1
where 1 is the current row.
I T
Unfortunately, 5 = Y- —h; = 0 is a uscless solution, for it allows for an X that does not
i=1

exist or is undefined. Also, there is no minimum to y — HX as X can be infinitely positive to
minimize the residual. Therefore it is scen that since error can be negative, minimizing the

residual is not a well-posed method to solve for X.

A.2 Minimizing the absolute Residual sum

T
A better option is to minimize the absolute value of the residual.|r| = ) |7 — h;%X| This has an
i-1
advantage over the former minimization because the residual sum can’t combine positive and
negative error that cancel out, but instead any crror makes a positive contribution. Thus, the

minimization of the absolute residual sum is a better routine for determining X, however it is
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scen that

v = 3 hi- X — bl = 3/ - hiﬁ)z = 3 (@@~ m%)?)’

%:i%((h — b)) E A (i — hiR)?

i—

d|r n - N . | ) X
I = S (@~ hR)) F 20 ) L (G i)
T _l
% - Zl ((?}i - hf-ef()z) 2oy — hix) - by
d% ~ —.o bi

i 1 (4;—hix)
uf| Hi—hi% )
=R
such that |h;x — ;| = 0leads to a solution that does not exist. For this reason, the minimization

of the Residual squared sum.

A.3 Minimization of the Residual squared sum

The Residual squared sum is developed as follows:

'Zm 'Z\/ ik 'sz i

This does have an analytical minimum, seen by taking the derivative:

mn . TL 2 n
J = % Zl Ui — h’ii|2 = éZl \/ (i — hf-ex)z = é El (9: — hiX)Z

1=
T

= 21 (i — hi%) - 5 (5 — hi%)
j—; = 21 (¥ — hiX) - h;
:j—;i = El h;i . (3}:, - h’ii)

¢ — {7 (5 — HX) =0

dX
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To set the derivative equal to zero, it is seen that HX = y. The solution (X = pinv(H) - ) is
solved using matrix math in section A.4, but later (in chapter 3) optimization routines will be
discussed in achieving this solution through minimization. This is also scen as the least squares

solution, because it solves for the minimum of the residual squared sum.

A.4 The Pseudo-Inverse

The Pscudo-Inverse [21], also known as the generalized inverse, has the advantage of being
able to find an inverse for a non-square matrix and achieve an analytical solution to the Least
Squares problem. In general, to set zero the residual » = y — HX, it is scen that HX = y. This
is explained in section A. The Pseudo Inverse accomplishes a best fit solution as X = pinv(H)y.
\e .
Given the equation
H—uxmxmxl = ¥Yux1
where n > m, it is scen that a simple matrix inverse cannot be taken due to the fact that H is

not square. To achieve an analytical solution using matrix algebra, begin by multiplying both

sides by HL  such that

TILXTL

T - T _
meu-H—'er mXmx1 = Hm wnYnxl

Now that there is a square matrix (Hy{;x-anxvn)me); an inverse can be taken such that

T -1 T A T —1 7T ~
(HmX'rLH“x'm) (HmX'u‘H—”xm)X”LXI = (‘H—mannxm) me-“YHXI
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It is now scen that this poses a solution as the following identities are seen

(i,

—1 7T S T —1 T =
7
anm) X >rmx 1 ( X TL u><'m) mxn J nxl

LA T Ti
~

'

=1 pinv(H)

2 T —1 7T ~
Xmx1 = (me-uHuxnt) men Ynx1

pinv(H)

pinv() is the pseudo inverse.
* thero . < ths - _gr T L
If there are more columns than rows, pinv (H), = = H,, . (anmmen)

nxn’

HTLX'!H)_l Hll‘

mxm ~ XY

If there are more rows than columns, pinv (H) = (H !

T TrL X Tl

This is commonly called the least squares solution.

A.5 2-norm minimization vs Analytical Least Squares
(pseudo-inverse)

The pscudo-inverse is viewed as the analytical solution to the least-squares minimization. Using
this 1-D example, it will be shown that this is an accurate assumption. The details of cach
problem is briefly explained in table A.1. The plots of the least squared minimization solution
and the pseudo-inverse approximation actually overlap - as seen in figure A.1, as well as have
the same error.

Table A.1 actually shows the same coefficient results and the same error results through

posing the Least Squares method as cither a minimization or the analytical solution.
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Criginal Data
2t = = = pPzeydo-Inverse Approximated Data (emror=11.172)
"""" Cptimized Approximated Data (emmor=11.172)

-5 —I4 —I3 —IZ —I 1 0 . % é le 4 .‘IS
Position

(a) Least Squares Minimization and Pseudo In-
verse Approximation

Figure A.1: The Least Squares Minimization and the Pscudo Inverse Approximation provide
the same result, shown overlapping in this figure and yiclding the same error.

Table A.1: A comparison of 2-Norm Minimization to the Pseudo-Inverse Solution

2-Norm Minimization Analytical Least Squares (pscudo-inverse)

Construction variable X(m) Xinx1 = PV (Hpsm)isen * Yaxi
min ||y — H - X,

[ 0.2237 \ [ 0.2237 \
0.3905 0.3905
1.1316 1.1316
2.1766 2.1766
e e — 4.7654 — 4.7654
Coefficients of X ~18.0085 — 18.0085
14.1469 14.1469
68.0966 68.0966
— 32.2813 — 32.2813
\ — 202.8808 / \ — 202.8808
2-norm error 11.2717 11.2717
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Appendix B

Orthogonal Basis Functions

B.1 Introduction to Gram-Schmidt

Gram-Schmidt orthogonalization takes a nonorthogonal set of lincarly independent functions
and constructs an orthogonal basis over an arbitrary interval. In other words, given the basis

function wy, wy, ws, ..., w,, construct orthogonal basis function such that ®,, @y, ®4,..., P,

such that span {w;} = span {®;}.

B.2 The Gram-Schmidt Process

B.2.1 Selection of the Basis Functions

The original basis functions, which shall be orthogonalized, are increasing in order, such that

a polynomial basis is developed.
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(fwl\ ( 1 \

Wo T

wsy - T

\’wn ) \ ! )

B.2.2 Orthogonalization

1
First define the inner product as (w, ®) = [ w(z) ® (z) dx
~1
n—1
The Gram-Schmidt process takes the general form of ®,, = w,, — Zl %Q)i

Now begin the Gram-Schmidt process using the basis functions provided above.

O =w =1

1 1
wy () @y () dx z - ldx 1
(I) — an _M(I) — __J; (I) — __{71 — %‘Tzl_ll — _E —
9 = UW>o ((I) (I)) 1 = U9 1 1 =T 1 =T T|1 =1 2—T
b | @1 (z) @y (z) dx J1-1dx Tt
-1 -1
1 1
wy () @y (x) dx wq (x) ©y () dx
(w3, @) (w3, @y) —J; 2(7) @1 (7) —“’; 3 (7) 22 (2)
Qs =wy — ——— P — Py = w3 — Dy — D,
(@, @) (@g, @3) L L
[ @1 (z) @y (z)dz | @ (z) Dy (z) dz
-1 -1
1 1
f:r:Q-d:n f?‘zfrd:r 5
i S — 1— — T—T2—£—ET—J'2—1
P 1 TTETL T g

1
fl-l-d:}: fTTdT
-1 -1

The results of this process are expressed in section B.3.
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B.3 Resulting Orthogonal Basis Functions

Using the Gram-Schmidt process on the basis functions above, the following orthogonal basis

functions were formed:

T
22— 1
z — %r
x! ?3:2 + ;—L
0 — D3 4
8 — 1_;,?»1 + M.TQ %
o7 — Bt 4 1 B
® — Th 1 M ' — 1218;T + 1287 1287
7’ — ET? T3 126 o 221‘]" + 2(1):1
\ o1 — 57t 25“; - %é‘l A Hee? — s )
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Appendix C

Multi-Dimensional Relationship

Development

C.1 Introduction

The goal is to take a multi-dimensional input signal, expand it using basis functions, and
establish various relationship between those basis functions depending on the order of the

relationship. A simple 2-D example can be scen as follows:

Order  Relationship Formed

0 1

higher
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This gets far more complicated, by even adding a single dimension for a 3-D example.

Order Relationship Formed

0 1

1 T 1Y z

2 r? vy Yy o y-z 22 zZ-x

3 2 22y zoy Yt Pz y-2? P 22z z.a?
higher

This suddenly becomes more complicated when cach polynomial is orthogonal. Thus, z? is

really z2 — 1; and 7% is really z° — %T and so on.

C.2 Approach

To develop every possible combination of a given order for a state in a set of data, using multiple
inputs, the desired order must first be known. Beginning with the first state, every possible
combination of the subsequent states’ orders is found while holding the previous state at a
given value which ranges from order 0 to the desired order. The model for this algorithm is
shown in figure C.1.

This algorithm was implemented and tested using MATLAB [22], and the results are shown

below.

C.3 Results

The following are the results of testing x = 1, y = 2, z = 3 as in the table above.
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Begin: define order,

esired

get state & number,
v

value_, =[1]

dimension =1

v
< order, =0
value=1 [* ’
v
order, , = order,,_, —order . value = value - polynomial.of.order, (stated.LIIlensiDn )
order, ., = order., order,  =order_ +order, .
dimension = dimension + |

dimension <

number,

nputs

order, = order,

no

now now

order _ — order +l]

A

yes

value_, =

[value , value- polynomial.of.order,_ |

Remove first value of value_, when finished

(a) Implementation of the Every-Possible-Combination Algorithm

Figure C.1: This flow chart describes the development of every combination of a state of
multiple dimension for a single order polynomial to be developed.
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Order Relationship Formed

0 1
1 1 2
2 0.6667 2.0000  3.6667 3.0000

3 0.4000 1.3333 3.6667 6.8000 2.0000

higher
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Appendix D

n-Dimensional Smoothing Functions

D.1 Weighting Functions Criteria

An arbitrary set of vertices { X, Xo, X3, ... X,,} arc introduced at a uniform distance h apart.
These vertices represent the center of a weighting function, and for this purpose, the center of
a region. Now assume a normalized parameter such that —1 < z; < 1:

a (X —-X))

o h

Assume that Fj(z) is the smooth approximation of a data set at a point. This is the smoothed
approximation blends the functions F; | (X) , F; (X), and Fj; (X) using a local weighting

function w (z;), that can be introduced as follows:

F (X) = w (:L‘;_l) Fr4 (JY) + w (.’II;) F) (X) +w (;]’?;+1) F;+1 (X)
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For the smoothing to be un-biased, the derivatives have to match also, such that

df‘é:{r)() —w (331—1) df‘;d;(x) +w (T ) df:L(‘)() +w (T . ) dﬂéi.(x)
dw(x dw(x dw(x
I (0 + SERFL (00 + S Fa (X)

This leads to the important property that the function tends to 1 in the center, w (0) = 1, and
the function tends toward zero at distance h and beyond. Since b is normalized, w (1) = 0.
Further, the derivative must be zero at the center, such that dwiﬂJ = (), and the derivative must
be zero at distance b, which again is normalized, such that % = (. Therefore, the sum of the

weighting functions at any point is 1, such that w (z;) + w(z; +1) =1 =w (z;) + w (z; — 1).

D.2 Weighting Function Design

A collection of weighting functions meets the aforementioned criteria of the form w(z) =

1—J (z) with 2% a polynomial of the form C'- 2" (1 — z)" such that it satisfics the conditions

d"w(0) uf w(l)
drep T 0 a dr o 0

1 1
With these conditions met, J (1) = C- [ 2" (1 — z)" - dz = 1 meaning that C' = | [ 2" (1 — =
0 0

with n > 0.
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D.3 Resulting Weighting Functions

Using the above procedure, the following weighting functions were developed:

/ l—=x \
1+2-23—3-22
1—6-2°+15-2"—10-2°
1+20-2"—70-2%+84-2° — 35 - 2"
1—70-2°+315-28% —540- 27 + 420 - 25 — 126 - 2°
1+252- 2t — 1386 - 1% + 3080 - 27 — 3465 - 2% + 1980 - 27 — 462 - 25
1—924 -2 + 6006 - 212 — 16380 - 't + 24024 - 2'° — 20020 - 2 + 9009 - 2° — 1716 - 27

\ 5 /

value

0.5
iy 15 . i S50, it
x position 0.3 ¥y position X position ! 05 ¥ position
(a) Two weighting functions shown in 2-D space (b) The sum of two 2-D weighting functions

Figure D.1: A weighting function evaluates to 1 at its center, 0, and cvaluates to 0 at its
extent, 1. For higher order weighting functions, the derivative is zero at both the center and
the extents.
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